Какой вид транслятора просматривает весь текст программы в поисках синтаксических ошибок

Транслятор обычно выполняет также диагностику ошибок, форирует словари идентификаторов, выдаёт для печати тексты программы и т. д.

Трансляция программы — преобразование программы, представленной на одном из языков программирования, в программу на другом языке и, в определённом смысле, равносильную первой.

Язык, на котором представлена входная программа, называется исходным языком, а сама программа — исходным кодом. Выходной язык называется целевым языком или объектным кодом.

Понятие трансляции относится не только к языкам программирования, но и к другим компьютерным языкам, вроде языков разметки, аналогичных HTML, и к естественным языкам, вроде английского или русского. Однако данная статья только о языках программирования, о естественных языках см.: Перевод.

Программа, составленная на алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на компьютере, так как он может осуществлять лишь последовательность элементарных операций, заданных в машинных кодах. Перевод программы с алгоритмического языка на машинный осуществляется с помощью специальной программы — транслятора. В ней заложены все правила алгоритмического языка и способы преобразования его различных конструкций на машинный язык. В процессе трансляции текст программы одновременно проверяется на ошибки. Существуют два типа трансляторов: компиляторы и интерпре­таторы.

Какой вид транслятора просматривает весь текст программы в поисках синтаксических ошибок

Интерпретаторберет очередной оператор языка из текста програм­мы, анализирует его структуру и затем сразу исполняет (обычно после анализа оператор транслируется в некоторое промежуточное представ­ление или даже в машинный код для более эффективного дальнейшего исполнения). Только после того как текущий оператор успешно выполнен, интерпретатор перейдет к следующему. При этом, если один и тот же оператор должен выполняться в программе многократно, интерпретатор всякий раз будет выполнять его так, как будто встретил впервые. Вслед­ствие этого программы, в которых требуется осуществить большой объем повторяющихся вычислений, могут работать довольно медленно. Кроме того, для выполнения такой программы на другом компьютере также должен быть установлен интерпретатор — ведь без него текст программы является для машины ничего не значащим набором символов.

Рис. 41. Схема процесса компиляции

Компиляторы, напротив, полностью обрабатывают весь текст про­граммы, прежде чем запускать ее на исполнение (рис. 41). Они просма­тривают его в поисках синтаксических ошибок (иногда несколько раз), выполняют определенный смысловой анализ и затем автоматически генерируют машинный код. При этом обычно выполняется оптимиза­ция программы с помощью набора методов, позволяющих повысить ее быстродействие (например, с помощью инструкций, ориентированных на конкретный процессор, путем исключения ненужных команд, про­межуточных вычислений и т.д.). В результате законченная программаполучается компактной и эффективной, работает во много раз быстрее, чем та же программа, выполняемая с помощью интерпретатора, и может быть перенесена на другие компьютеры с процессором, поддерживающим соответствующий машинный код.программы

Основной недостаток компиляторов — трудоемкость трансляции языков программирования, ориентированных на обработку данных сложной структуры. В машинный код приходится вставлять множество дополнительных проверок, анализировать наличие ресурсов операцион­ной системы и т.п. При использовании интерпретатора, наоборот, можно в любой момент остановить работу программы, исследовать содержимое памяти, организовать диалог с пользователем, выполнить сколь угодно сложные преобразования данных и при этом постоянно контролировать состояние окружающей программно-аппаратной среды, благодаря чему достигается высокая надежность работы. Кроме того, интерпретатор очень удобен для использования в качестве инструмента изучения про­граммирования, так как позволяет понять механизм работы каждого оператора языка в отдельности.

В реально функционирующих системах программирования исполь­зуются обе технологии — компиляции и интерпретации.

Транслятор – это программа, которая переводит входную программу на исходном (входном) языке в эквивалентную ей выходную программу на результирующем (выходном) языке.

Результатом работы транслятора будет результирующая программа, но только в том случае, если текст исходной программы является правильным — не со­держит ошибок с точки зрения синтаксиса и семантики входного языка. Если исходная программа неправильная (содержит хотя бы одну ошибку), то результатом работы транслятора будет сообщение об ошибке (как правило, с допол­нительными пояснениями и указанием места ошибки в исходной программе). В этом смысле транслятор сродни переводчику, например, с английского, которому подсунули неверный текст.

Компилятор – это транслятор, который осуществляет перевод исходной программы в эквивалентную ей объектную программу на языке машинных команд или на языке ассемблера.

Таким образом, компилятор отличается от транслятора лишь тем, что его ре­зультирующая программа всегда должна быть написана на языке машинных ко­дов или на языке ассемблера. Результирующая программа транслятора, в общем случае, может быть написана на любом языке — возможен, например, транслятор программ с языка Pascal на язык С. Соответственно, всякий компилятор являет­ся транслятором, но не наоборот — не всякий транслятор будет компилятором. Например, упомянутый выше транслятор с языка Pascal на С компилятором яв­ляться не будет.

Ассемблер – компилятор, который переводит каждую команду исходной программы в одну машинную команду.

Интерпретатор — это программа, которая воспринимает входную программу на исходном языке и выполняет ее.

В отличие от трансляторов интерпретаторы не порождают результирующую про­грамму (и вообще какого-либо результирующего кода) — и в этом принципиаль­ная разница между ними. Интерпретатор, так же как и транслятор, анализирует текст исходной программы. Однако он не порождает результирующей программы, а сразу же выполняет исходную в соответствии с ее смыслом, заданным семанти­кой входного языка. Таким образом, результатом работы интерпретатора будет результат, заданный смыслом исходной программы, в том случае, если эта про­грамма правильная, или сообщение об ошибке, если исходная программа неверна.

4.3 Общая схема работы компилятора

Основные функции компилятора:

1) проверка исходной цепочки символов на принадлежность к входному языку;

2) генерация выходной цепочки символов на языке машинных команд или ассемблере.

Процесс компиляции состоит из двух основных этапов: синтеза и анализа. На этапе анализа выполняется распознавание текста исходной программы и заполнение таблиц идентификаторов. Результатом этапа служит некоторое внутреннее представление программы, понятное компилятору.

На этапе синтеза на основании внутреннего представления программы и информации, содержащейся в таблице идентификаторов, порождается текст результирующей программы. Результатом этого этапа является объектный код.

Данные этапы состоят из более мелких стадий, называемых фазами. Состав фаз и их взаимодействие зависит от конкретной реализации компилятора. Но в том или ином виде в каждом компиляторе выделяются следующие фазы:

1) лексический анализ;

2) синтаксический анализ;

3) семантический анализ;

4) подготовка к генерации кода;

5) генерация кода.

Определение Процесс последовательного чтения компилятором данных из внешней памяти, их обработки и помещения результатов во внешнюю память, называется проходом компилятора.

По количеству проходов выделяют одно-, двух-, трех- и многопроходные компиляторы. В данном пособии предлагается схема разработки трехпроходного компилятора, в котором первый проход – лексический анализ, второй — синтаксический, семантический анализ и генерация внутреннего представления программы, третий – интерпретация программы.

Общая схема работы компилятора представлена на рисунке 4.3.

Рисунок 4.1– Общая схема работы компилятора

Отладка программы – это процесс поиска и устранения ошибок. Часть ошибок формального характера, связанных с нарушением правил записи конструкций языка или отсутствием необходимых описаний, обнаруживает транслятор, производя синтаксический анализ текста программы. Транслятор выявляет ошибки и сообщает о них, указывая их тип и место в программе. Такие ошибки называются ошибками времени трансляции или синтаксическими ошибками.

Ошибочные ситуации могут возникнуть и при выполнении программы, например, деление на нуль или извлечение корня квадратного из отрицательного числа. Такие ошибки называются ошибками времени выполнения.

Программа, не имеющая ошибок трансляции и выполнения, может и не дать верных результатов из-за логических ошибок в алгоритме, т. е. алгоритмических или семантических ошибок. Ошибки подобного рода могут возникнуть на любом этапе разработки программы: постановки задачи, разработке математической модели или алгоритма. Необходим действенный контроль над процессом вычислений, позволяющий предотвращать или своевременно обнаруживать ошибки подобного рода. Для этого используются как качественный анализ задачи, основанный на различного рода интуитивных соображениях и правдоподобных рассуждениях, так и контрольный просчет или тестирование программы.

Тестирование программы – это выполнение программы на наборах исходных данных (тестах), для которых известны результаты, полученные другим методом. Система тестов подбирается таким образом, чтобы

а) проверить все возможные режимы работы программы;

б) по возможности, локализовать ошибку.

При тестировании программы простой и действенный метод дополнительного контроля над ходом её выполнения – получение контрольных точек, т. е. контрольный вывод промежуточных результатов.

Для проверки правильности работы программы иногда полезно также выполнить проверку выполнения условий задачи (например, для алгебраического уравнения найденные корни подставляются в исходное уравнение и проверяются расхождения левой и правой частей).

33. ВИДЫ ОШИБОК В ПРОГРАММАХ

Об ошибках в программе сигнализируют некорректная работоспособность программы либо ее полное невыполнение. В наше время для обозначения ошибки в программе используют термин «Баг» (с англ. Bug-жук).

Есть несколько типов ошибок:

1) Логическая ошибка. Это, пожалуй, наиболее серьезная из всех ошибок. Когда написанная программа на любом языке компилирует и работает правильно, но выдает неправильный вывод, недостаток заключается в логике основного программирования. Это ошибка, которая была унаследована от недостатка в базовом алгоритме. Сама логика, на которой базируется вся программа, является ущербной. Чтобы найти решение такой ошибки нужно фундаментальное изменение алгоритма. Вам нужно начать копать в алгоритмическом уровне, чтобы сузить область поиска такой ошибки. (пример: задача программы вывести сумму двух чисел а и b.

2) Синтаксическая ошибка. Каждый компьютерный язык, такой как C, Java, Perl и Python имеет специфический синтаксис, в котором будет написан код. Когда программист не придерживаться «грамматики» спецификациями компьютерного языка, возникнет ошибка синтаксиса. Такого рода ошибки легко устраняются на этапе компиляции.

3) Ошибка компиляции. Компиляция это процесс, в котором программа, написанная на языке высокого уровня, преобразуется в машиночитаемую форму. Многие виды ошибок могут происходить на этом этапе, в том числе и синтаксические ошибки. Иногда, синтаксис исходного кода может быть безупречным, но ошибка компиляции все же может произойти. Это может быть связано с проблемами в самом компиляторе. Эти ошибки исправляются на стадии разработки.

4) Ошибки среды выполнения (RunTime). Программный код успешно скомпилирован, и исполняемый файл был создан. Вы можете вздохнуть с облегчением и запустить программу, чтобы проверить ее работу. Ошибки при выполнении программы могут возникнуть в результате аварии или нехватки ресурсов носителя. Разработчик должен был предвидеть реальные условия развертывания программы. Это можно исправить, вернувшись к стадии кодирования.

5) Арифметическая ошибка. Многие программы используют числовые переменные, и алгоритм может включать несколько математических вычислений. Арифметические ошибки возникают, когда компьютер не может справиться с проблемами, такими как «Деление на ноль», или ведущие к бесконечному результату. Это снова логическая ошибка, которая может быть исправлена только путем изменения алгоритма.

6) Ошибки ресурса. Ошибка ресурса возникает, когда значение переменной переполняет максимально допустимое значение. Переполнение буфера, использование неинициализированной переменной, нарушение прав доступа и переполнение стека — примеры некоторых распространенных ошибок.

7) Ошибка взаимодействия. Они могут возникнуть в связи с несоответствием программного обеспечения с аппаратным интерфейсом или интерфейсом прикладного программирования. В случае веб-приложений, ошибка интерфейса может быть результатом неправильного использования веб-протоколов

Синтаксические ошибки – это ошибки в записи конструкций языка программирования (чисел, переменных, функций, выражений, операторов, меток, подпрограмм).

Семантические ошибки – это ошибки, связанные с неправильным содержанием действий и использованием недопустимых значений величин.

Обнаружение большинства синтаксических ошибок автоматизировано в основных системах программирования. Поиск же семантических ошибок гораздо менее формализован; часть их проявляется при исполнении программы в нарушениях процесса автоматических вычислений и индицируется либо выдачей диагностических сообщений рабочей программы, либо отсутствием печати результатов из-за бесконечного повторения одной и той же части программы (зацикливания), либо появлением непредусмотренной формы или содержания печати результатов. Семантически ошибки можно выявить, пользуясь отладчиком, встроенным в компилятор.

Ответ: С появления первых компьютеров программисты серьезно задумывались над проблемой кодирования компьютерных программ. Уже с конца 40-х годов стали появляться первые примитивные языки программирования высокого уровня. В них программист записывал решаемую задачу в виде математических формул, а затем, используя специальную таблицу, переводил символ за символом, преобразовывал эти формулы в двухлитерные коды. В дальнейшем специальная программа (впоследствии названная интерпретатором) превращала эти коды в двоичный машинный код. Первый компилятор был разработан Г. Хоппер в начале 50-х годов; он осуществлял функцию объединения команд и в ходе трансляции производил организацию подпрограмм, выделение памяти компьютера, преобразование команд высокого уровня (в то время псевдокодов) в машинные команды. В дальнейшем компиляторы и интерпретаторы для языков Ассемблера стали развиваться и прочно вошли в практику компьютерного дела.

Идеи трансляции (перекодирования) одних символов в другие легли в основу создания различных языков программирования с соответствующими трансляторами — компиляторами и/или интерпретаторами. Отличие компиляторов от интерпретаторов заключается в процедуре трансляции текста в машинный код. Компилятор преобразует весь текст программы в последовательный набор машинных команд, который в дальнейшем отправляется на выполнение (пример компилятора с языка Паскаль). Интерпретатор же осуществляет трансляцию по принципу синхронного перевода. Каждая отдельная строка программного текста транслируется, а затем, после ее интерпретации, команды этой строки выполняются (пример языка Бейсик). Современные трансляторы с языков программирования высокого уровня, систем управления базами данных интегрируют в себе возможности и достоинства компиляторов и интерпретаторов, а в системы программирования добавляют различные сервисные утилиты по трансляции и отладке создаваемых программ.

Важнейшим элементом в развитии систем программирования выступили подпрограммы. Появление аппарата подпрограмм существенно облегчило процесс разработки системных и прикладных программ. Подпрограммы позволили формировать библиотеки из наиболее часто употребляемых в программах алгоритмов -процедур и функций. В системах программирования обязательно присутствуют стандартные (встроенные в систему) библиотеки подпрограмм. Например, в их число входят подпрограммы вычисления математических функций sin(х), cos(x), abs(х) и др.

В настоящее время распространены пользовательские и прикладные библиотеки подпрограмм. Их число увеличивается. Меняется структура библиотечных подпрограмм. В современных языках получили распространение модули (Unit), представляющие специализированные пакеты взаимосвязанных подпрограмм определенного предназначения, например по работе с клавиатурой, с графикой и пр. Развитие объектно-ориентированного программирования позволило создавать библиотеки объектов и подпрограмм с объектными типами данных (Object). Примером могут служить оболочки типа TurboVision.

Современная программа представляет набор команд, операторов и выражений, в которых имеются ссылки (прямые или косвенные) на различные подпрограммы из существующих в системе программирования библиотек, модулей, объектов. В этой связи исходный текст программы, как правило, занимает по объему места в памяти в несколько раз меньше, чем его оттранслированный вариант в машинных кодах. Как это происходит?

Рассмотрим один из вариантов трансляции программы с языка программирования Паскаль. Исходный текст программы решения квадратного уравнения представлен ниже:

var А, В, С, D, XI, Х2: REAL;

writeln(‘введи А,В,С’); read(A,B,C);

if D<0 then write(‘корней нет’)

write(‘X1=’, X1,’ X2=’, Х2);

Следующий шаг трансляции — компоновка — заключается в подключении к исходному объектному модулю объектных модулей соответствующих подпрограмм в места ссылок на них (исходные тексты этих подпрограмм в системе вовсе отсутствуют). Другими словами, на место процедуры Write помещается подпрограмма, осуществляющая процедуру вывода данных на экран дисплея. Таким образом после компоновки (или, иначе, редактирования связей link editor) возникает абсолютный модуль, намного превышающий по объему размер исходного текста программы, Он и является исполняемым компьютером после его запуска. Расширениями его файлового имени, как правило, являются. com или. ехе.

В силу того, что объектные модули не предназначены для непосредственного исполнения, в них обычно нет привязки составляющих их машинных команд к конкретному месту в ОЗУ. Адреса машинных слов бывают условными, что помогает компоновщику размещать объектные модули в свободных местах ОЗУ (заменяя условные адреса команд на конкретные).

Многие системы программирования дополнительно содержат промежуточные этапы трансляции. В этих системах на первом шаге предусмотрена трансляция исходного текста в макроассемблерный код, а затем в объектный модуль. Это связано с историей развития языков программирования, а также с тем, что многие подпрограммы удобнее писать на языке Ассемблера, и подключать их легче на этапе линко-вания ассемблерного модуля с ассемблерными библиотеками подпрограмм.

В современных системах программирования, например, Турбо-Паскаль, Турбо-Си весь этот сложный процесс трансляции с компоновкой подпрограмм скрыт от пользователя и осуществляется специальными компиляторами.

Коротко об отладчиках. Эти программы входят в современные системы программирования и предоставляют средства для просмотра и изменения значений переменных в ходе отладки программы, поиска ошибок и т.д. Использование отладчиков значительно облегчает процесс доводки больших программ.

Заметим, что описанный процесс трансляции характерен для компиляции. Последовательно реализованный интерпретатор объектного модуля фактически не создает. В этом его и недостаток, и достоинство (экономия машинной памяти). Впрочем, у современных ЭВМ, в том числе и персональных, проблема малого ОЗУ отходит на второй план, и интерпретация встречается все реже, так как эффективность этого процесса в целом значительно ниже.

Остается непонятным, как детально происходит трансляция. Пользователь может не уметь сам вручную оттранслировать программу (даже столь короткую, как вышеприведенная), но элементарное понимание этого сложного процесса необходимо.

На первом этапе транслятор производит синтаксический анализ исходной программы — проверяет, не нарушены ли формальные правила, содержащиеся в данном языке программирования. Например, в Паскале текст может встретиться либо внутри текстовой константы (т.е. в апострофах), либо внутри комментария. Если такой текст встретился в другом месте, то это явная ошибка. В системе программирования встроены описания всех синтаксически разрешенных конструкций, и транслятор их применяет к исходной программе. Для задания синтаксиса применяются формы Бэкуса-Наура и синтаксические диаграммы, о которых будет рассказано в следующей главе.

Первой фазой синтаксического анализа является лексический анализ. Он заключается в просмотре литер исходной программы и построении из них лексически допустимых единиц — идентификаторов, ключевых слов языка, чисел и т.д. Во второй фазе эти единицы уже рассматриваются как неделимые и проверяется допустимость их сочетания.

Даже если в синтаксическом смысле исходная программа верна, это не означает, что она имеет смысл в рамках данного языка программирования. На следующем этапе семантического анализа транслятор ищет ошибки такого рода: числа употребления слов BEGIN и END не совпадают; переменные не описаны (в языке, требующем обязательного явного описания переменных), т.е. текст программы непонятен (семантика — смысловая сторона языка).

Лишь после того, как в программе все синтаксически правильно и семантически понятно, транслятор переводит операторы программы в машинный код. Это отнюдь не означает, что в программе все благополучно — не исключены ошибки этапа исполнения (деление на ноль, выход за границу массива, переполнение разрядов и т.д.).

Различные фазы компиляции могут быть как последовательными, так и частично перекрывающимися во времени. В зависимости от способа реализации компилятор читает и обрабатывает исходный текст один или несколько раз, называясь соответственно однопроходным, двухпроходным и т.д.

Компиляторы и интерпретаторы:

§ Программа, предназначенная для трансляции высокоуровневого языка в абсолютный код или, иногда, в язык ассемблера. Входной информацией для компилятора (исходный код) является описание алгоритма или программа на проблемно-ориентированном языке, а на выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке(объектный код).

§ Программа выполняющая (после трансляции) компоновку программы.

§ Векторизующий. Компилирует исходный код в машинный код для компьютеров, оснащённых векторным процессором.

§ Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.

§ Диалоговый. См.: диалоговый транслятор.

§ Инкрементальный. Повторно транслирует/компонует фрагменты программы и дополнения к ней без перекомпиляции всей программы.

§ Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператора(команды) исходной программы.

§ Компилятор компиляторов. Компилятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.

§ Отладочный. Устраняет отдельные виды синтаксических ошибок.

§ Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.

§ Самокомпилируемый. Написан на том же языке, с которого осуществляется компиляция.

§ Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Важными составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Интерпрета́тор (языка программирования) —

§ Программа или техническое средство, выполняющее интерпретацию.

§ Вид транслятора, осуществляющего пооператорную (покомандную) обработку и выполнение исходной программы или запроса (в отличие от компилятора, транслирующего всю программу без её выполнения).

§ Программа (иногда аппаратное средство), анализирующая команды или операторы программы и тут же выполняющая их.

§ Языковой процессор, который построчно анализирует исходную программу и одновременно выполняет предписанные действия, а не формирует на машинном языке скомпилированную программу, которая выполняется впоследствии.

Простой интерпретатор анализирует и тут же выполняет (собственно интерпретация) программу покомандно (или построчно), по мере поступления её исходного кода на вход интерпретатора. Достоинством такого подхода является мгновенная реакция. Недостаток — такой интерпретатор обнаруживает ошибки в тексте программы только при попытке выполнения команды (или строки) с ошибкой.

Интерпретатор компилирующего типа — это система из компилятора, переводящего исходный код программы в промежуточное представление, например, в байт-код или p-код, и собственно интерпретатора, который выполняет полученный промежуточный код (так называемая виртуальная машина). Достоинством таких систем является большее быстродействие выполнения программ (за счёт выноса анализа исходного кода в отдельный, разовый проход, и минимизации этого анализа в интерпретаторе). Недостатки — большее требование к ресурсам и требование на корректность исходного кода. Применяется в таких языках, как Java, Tcl, Perl(используется байт-код), REXX (сохраняется результат парсинга исходного кода), а также в различныхСУБД

ТРАНСЛЯТОРЫ И ИХ ВИДЫ

Программа, составленная на алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на компьютере, так как он может осуществлять лишь последовательность элементарных операций, заданных в машинных кодах. Перевод программы с алгоритмического языка на машинный осуществляется с помощью специальной программы — транслятора. В ней заложены все правила алгоритмического языка и способы преобразования его различных конструкций на машинный язык. В процессе трансляции текст программы одновременно проверяется на ошибки. Существуют два типа трансляторов: компиляторы и интерпре­таторы.

Интерпретаторберет очередной оператор языка из текста програм­мы, анализирует его структуру и затем сразу исполняет (обычно после анализа оператор транслируется в некоторое промежуточное представ­ление или даже в машинный код для более эффективного дальнейшего исполнения). Только после того как текущий оператор успешно выполнен, интерпретатор перейдет к следующему. При этом, если один и тот же оператор должен выполняться в программе многократно, интерпретатор всякий раз будет выполнять его так, как будто встретил впервые. Вслед­ствие этого программы, в которых требуется осуществить большой объем повторяющихся вычислений, могут работать довольно медленно. Кроме того, для выполнения такой программы на другом компьютере также должен быть установлен интерпретатор — ведь без него текст программы является для машины ничего не значащим набором символов.

Основной недостаток компиляторов — трудоемкость трансляции языков программирования, ориентированных на обработку данных сложной структуры. В машинный код приходится вставлять множество дополнительных проверок, анализировать наличие ресурсов операцион­ной системы и т.п. При использовании интерпретатора, наоборот, можно в любой момент остановить работу программы, исследовать содержимое памяти, организовать диалог с пользователем, выполнить сколь угодно сложные преобразования данных и при этом постоянно контролировать состояние окружающей программно-аппаратной среды, благодаря чему достигается высокая надежность работы. Кроме того, интерпретатор очень удобен для использования в качестве инструмента изучения про­граммирования, так как позволяет понять механизм работы каждого оператора языка в отдельности.

В реально функционирующих системах программирования исполь­зуются обе технологии — компиляции и интерпретации.

Виды трансляторов

Трансляция и интерпретация — разные процессы: трансляция занимается переводом программ с одного языка на другой, а интерпретация отвечает за исполнение программ. Однако, поскольку целью трансляции как правило является подготовка программы к интерпретации, то эти процессы обычно рассматриваются вместе. Например, языки программирования часто характеризуются как «компилируемые» или «интерпретируемые», в зависимости от того, преобладает при использовании языка компиляция или интерпретация. Причём практически все языки программирования низкого уровня и третьего поколения, вроде ассемблера, Си или Модулы-2, являются компилируемыми, а более высокоуровневые языки, вроде Python или SQL, — интерпретируемыми.

С другой стороны, существует взаимопроникновение процессов трансляции и интерпретации: интерпретаторы могут быть компилирующими (в том числе с динамической компиляцией), а в трансляторах может требоваться интерпретация для конструкций метапрограммирования (например, для макросов в языке ассемблера, условной компиляции в Си или для шаблонов в C++).

Более того, один и тот же язык программирования может и транслироваться, и интерпретироваться, и в обоих случаях должны присутствовать общие этапы анализа и распознавания конструкций и директив исходного языка. Это относится и к программным реализациям, и к аппаратным — так, процессоры семейства x86 перед исполнением инструкций машинного языка выполняют их декодирование, выделяя в опкодах поля операндов (регистров, адресов памяти, непосредственных значений), разрядности и т. п.

Реализации

Цель трансляции — преобразовать текст с одного языка на другой, который понятен адресату текста. В случае программ-трансляторов, адресатом является техническое устройство (процессор) или программа-интерпретатор.

Язык процессоров (машинный код) обычно является низкоуровневым. Существуют платформы, использующие в качестве машинного язык высокого уровня (например, iAPX-432

Процесс компиляции как правило состоит из нескольких этапов: лексического, синтаксического и Шаблон:Не переведено, генерации промежуточного кода, оптимизации и генерации результирующего машинного кода. Помимо этого, программа как правило зависит от сервисов, предоставляемых операционной системой и сторонними библиотеками (например, файловый ввод-вывод или графический интерфейс), и машинный код программы необходимо связать с этими сервисами. Связывание со статическими библиотеками выполняется редактором связей или компоновщиком (который может представлять из себя отдельную программу или быть частью компилятора), а с операционной системой и динамическими библиотеками связывание выполняется при начале исполнения программы загрузчиком.

Достоинство компилятора: программа компилируется один раз и при каждом выполнении не требуется дополнительных преобразований. Соответственно, не требуется наличие компилятора на целевой машине, для которой компилируется программа. Недостаток: отдельный этап компиляции замедляет написание и отладку и затрудняет исполнение небольших, несложных или разовых программ.

В случае, если исходный язык является языком ассемблера (низкоуровневым языком, близким к машинному языку), то компилятор такого языка называется ассемблером.

Противоположный метод реализации — когда программа исполняется с помощью интерпретатора вообще без трансляции. Интерпретатор программно моделирует машину, цикл выборки-исполнения которой работает с командами на языках высокого уровня, а не с машинными командами. Такое программное моделирование создаёт виртуальную машину, реализующую язык. Этот подход называется чистой интерпретацией. Чистая интерпретация применяется как правило для языков с простой структурой (например, АПЛ или Лисп). Интерпретаторы командной строки обрабатывают команды в скриптах в UNIX или в пакетных файлах (.bat) в MS-DOS также как правило в режиме чистой интерпретации.

Достоинство чистого интерпретатора: отсутствие промежуточных действий для трансляции упрощает реализацию интерпретатора и делает его удобнее в использовании, в том числе в диалоговом режиме. Недостаток — интерпретатор должен быть в наличии на целевой машине, где должна исполняться программа. А свойство чистого интерпретатора, что ошибки в интерпретируемой программе обнаруживаются только при попытке выполнения команды (или строки) с ошибкой, можно признать как недостатком, так и достоинством.

Существуют компромиссные между компиляцией и чистой интерпретацией варианты реализации языков программирования, когда интерпретатор перед исполнением программы транслирует её на промежуточный язык (например, в байт-код или p-код), более удобный для интерпретации (то есть речь идёт об интерпретаторе со встроенным транслятором). Такой метод называется смешанной реализацией. Примером смешанной реализации языка может служить Perl. Этот подход сочетает как достоинства компилятора и интерпретатора (бо́льшая скорость исполнения и удобство использования), так и недостатки (для трансляции и хранения программы на промежуточном языке требуются дополнительные ресурсы; для исполнения программы на целевой машине должен быть представлен интерпретатор). Также, как и в случае компилятора, смешанная реализация требует, чтобы перед исполнением исходный код не содержал ошибок (лексических, синтаксических и семантических).

По мере увеличения ресурсов компьютеров и расширения гетерогенных сетей (в том числе интернета), связывающих компьютеры разных типов и архитектур, выделился новый вид интерпретации, при котором исходный (или промежуточный) код компилируется в машинный код непосредственно во время исполнения, «на лету». Уже скомпилированные участки кода кешируются, чтобы при повторном обращении к ним они сразу получали управление, без перекомпиляции. Этот подход получил название динамической компиляции.

Достоинством динамической компиляции является то, что скорость интерпретации программ становится сравнимой со скоростью исполнения программ в обычных компилируемых языках, при этом сама программа хранится и распространяется в единственном виде, независимом от целевых платформ. Недостатком является бо́льшая сложность реализации и бо́льшие требования к ресурсам, чем в случае простых компиляторов или чистых интерпретаторов.

Этот метод хорошо подходит для веб-приложений. Соответственно, динамическая компиляция появилась и поддерживается в той или иной мере в реализациях Java, Microsoft .NET, Perl, Python.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *