Важнейшие геномные проекты XX и XXI веков. Проект по расшифровке генома— международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20—25 тыс. генов в человеческом геноме. Проект начался в 1990 году, под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США. В 2000 году был выпущен рабочий черновик структуры генома, полный геном — в 2003 году, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Частной компанией «Celera Genomics » был запущен аналогичный параллельный проект, завершённый несколько ранее международного. Основной объём секвенирования был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Кроме очевидной фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения. Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах, среди которых бактерии, насекомые, такие как мушка дрозофила, и млекопитающие, например, мышь. Изначально планировалось определение последовательности более трёх миллиардов нуклеотидов, содержащихся в гаплоидном человеческом геноме. Затем несколько групп объявили о попытке расширить задачу до секвенирования диплоидного генома человека. Геном любого отдельно взятого организма (исключая однояйцевых близнецов и клонированных животных) уникален, поэтому определение последовательности человеческого генома в принципе должно включать в себя и секвенирование многочисленных вариаций каждого гена. Однако, в задачи проекта «Геном человека» не входило определение последовательности всей ДНК, находящейся в человеческих клетках; а некоторые гетерохроматиновые области (в общей сложности около 8 %) остаются несеквенированными до сих пор. Последовательность человеческой ДНК сохраняется в базах данных, доступных любому пользователю через Интернет. Национальный центр биотехнологической информации США (и его партнёрские организации в Европе и Японии) хранят геномные последовательности в базе данных известной как GenBank, вместе с последовательностями известных и гипотетических генов и белков. Процесс идентификации границ генов и других мотивов в необработанных последовательностях ДНК называется аннотацией генома (англ. ) и относится к области биоинформатики. Эту работу при помощи компьютеров выполняют люди, но они делают её медленно и, чтобы удовлетворять требованиями высокой пропускной способности проектов секвенирования геномов, здесь также всё шире используют специальные компьютерные программы. Другая, часто упускаемая из виду цель проекта «Геном человека» — исследование этических, правовых и социальных последствий расшифровки генома. Важно исследовать эти вопросы и найти наиболее подходящие решения до того, как они станут почвой для разногласий и политических проблем. Все люди имеют в той или иной степени уникальные геномные последовательности. Поэтому данные, опубликованные проектом «Геном человека», не содержат точной последовательности геномов каждого отдельного человека. Это комбинированный геном небольшого количества анонимных доноров. Почти все цели, которые ставил перед собой проект, были достигнуты быстрее, чем предполагалось. Проект по расшифровке генома человека был закончен на два года раньше, чем планировалось. Проект поставил разумную, достижимую цель секвенирования 95 % ДНК. Исследователи не только достигли её, но и превзошли собственные предсказания, и смогли секвенировать 99,99 % человеческой ДНК. Проект не только превзошёл все цели и выработанные ранее стандарты, но и продолжает улучшать уже достигнутые результаты.
Проект «Геном человека»был начат в 1990 году как длительная программа, рассчитанная на 15 лет (хотя он завершен в 2003 г). Цель проекта — проанализировать и секвенировать всю ДНК во всех человеческих хромосомах для улучшения здоровья людей. 26 июня 2000 г. исследовательские лаборатории — Международный консорциум Human Genome Project и частная американская компания Celero Genomics официально объявили об окончании работ по расшифровке генома человека. Было сообщено, что расшифровано примерно 97% всех текстов наследственной информации, записанной на двойной спирали ДНК. человека. Идентифицировано примерно 3 млрд. нуклеотидов, из которых складывается около 30 тыс. генов (общего мнения о том, сколько всего генов у человека, пока нет — приводится цифра от 30 до 40 тыс. и более), «упакованных» в 46 хромосом человека.
Множество этических проблем проекта можно классифицировать по трем категориям: индивидуальные, социальные, видовые. Главные индивидуальные проблемы — это проблемы автономии и конфиденциальности. Первым биоэтическим вопросом, вставшим в процессе становления и развития медицинской генетики, называют проблему конфиденциальности медицинской информации и при этом добровольности генеалогического анализа, генетического тестирования пациентов и их сканирования. Вопросы, возникающие в связи с проектом «Геном человека» на индивидуальном уровне, — это скорее вопросы степени, чем рода, поскольку автономия и конфиденциальность является вопросами фундаментальной важности и для программ индивидуального генетического скрининга. Этические проблемы социального уровня касаются распределения ресурсов, коммерциализации и евгеники. Соблюдение конфиденциальности, как и принципа уважения автономии пациента, — важнейшие моральные начала врачевания. Генетическая информация может стать клеймом для человека, явиться основанием его социальной дискриминации. Большое значение с философской и морально-правовой точки зрения придается конфиденциальности любых исследований. Опасность массовых генетических исследований заключается в использовании банка данных не по назначению, особенно в дискриминационных целях (нанесение морального ущерба, увольнение с работы и другие), требуется разработка особых моральных норм и правовых требований, касающихся неразглашения индивидуальных генетических данных.
В процессе продвижения программы «Геном человека» современная генетика стала переходить в новую фазу, которую принято называть геноми о. Этот термин был предложен в 1987 г. В отличие от более традиционной генетики, занимавшейся единичными генами, геномика — это исследование функций и взаимодействий всех генов в геноме. Это изучение всего генетического аппарата как целого,
включая комплексные взаимодействия между его подсистемами, а также его взаимоотношения со средой.
Генетический скрининг — это массовое генетическое обследование людей, имеющее целый ряд медицинских и биологических аспектов. В частности, он имеет отношение к наследственной патологии. Наследственные болезни и ранее относились к одной из приоритетных проблем этики и деонтологии. То, что наследственные болезни во многих случаях даны на всю жизнь, более того, передаются из
поколения в поколение и нередко имеют достаточно тяжелые проявления, не могло не порождать проблем.
Протеомика — это изучение всей совокупности белков клеток и их взаимодействия в целом организме. Предполагается изучение процесса синтеза белков, их структуры и состава, возникновения модификаций, их функций, чтобы, поняв их сложный метаболизм, создать своеобразный «каталог» структуры и функций всех белков человека. Известно, что в организме человека примерно миллион разных белков, и они постоянно меняются в зависимости от стадии развития клетки, возраста организма. Более того, их функции зависят не только от первичной, но и от их вторичной, третичной и т. структуры, от пространственного расположения, взаимосвязи с другими белками и иными компонентами крови и тканей организма и т.
Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается, что детальное знание человеческого генома откроет новые пути к успехам в медицине и биотехнологии. Ясные практические результаты проекта появились ещё до завершения работы.
Несколько компаний, например «Myriad Genetics (англ. )», начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак груди, нарушения свёртываемости крови, кистозный фиброз, заболевания печени и многим другим.
Также ожидается, что информация о геноме человека поможет поиску причин возникновения рака, болезни Альцгеймера и другим областям клинического значения и, вероятно, в будущем может привести к значительным успехам в их лечении.
Ожидается множество полезных для биологов результатов. Например, исследователь, изучающий определённую форму рака может сузить свой поиск до одного гена. Посетив базу данных человеческого генома в сети, этот исследователь может проверить что другие учёные написали об этом гене включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими человеческими генами или с генами в мышах или дрожжах или дрозофиле, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела в которых ген активируется, заболеваниями, связанными с этим геном или другие данные.
Более того, глубокое понимание процесса заболевания на уровне молекулярной биологии может предложить новые терапевтические процедуры. Учитывая установленную огромную роль ДНК в молекулярной биологии и её центральную роль в определении фундаментальных принципов работы клеточных процессов, вероятно, что расширение знаний в данной области будет способствовать успехам медицины в различных областях клинического значения, которые без них были бы невозможны.
Анализ сходства в последовательностях ДНК различных организмов также открывает новые пути в исследовании теории эволюции. Во многих случаях вопросы эволюции теперь можно ставить в терминах молекулярной биологии. И в самом деле, многие важнейшие вехи в истории эволюции (появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных) можно проследить на молекулярном уровне. Ожидается что этот проект прольёт свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами (приматами, а на деле и всеми млекопитающими).
Проект определения разнообразия человеческого генома (англ. ) (HGDP), отдельное исследование, нацелено на картирование участков ДНК, которые различаются между этническими группами. В будущем HGDP, вероятно, сможет получить новые данные в области контроля заболеваний, развития человека и антропологии. HGDP может открыть секреты уязвимости этнических групп к отдельным заболеваниям и подсказать новые стратегии для их преодоления. Он может также показать, как человеческие популяции адаптировались к этим заболеваниям.
2010 год – генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах;
2020 год – на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде;
2030 год – определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах;
2040 год – Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга. Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию. Неравенство в мире сохраняется, создавая напряженность на международном уровне.
Дина Мясникова,
обозреватель журнала «Экология и жизнь»
«Экология и жизнь» №12, 2010
Проект «Геном человека» является наиболее амбициозной биологической исследовательской программой за всю историю науки. Знание генома человека внесет неоценимый вклад в развитие медицины и биологии человека. Исследования человеческого генома так же необходимо человечеству, как когда-то было необходимо знание человеческой анатомии. Осознание этого пришло в 1980-х, и это привело к тому, что появился проект «Геном человека». В 1988-м с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А. Баев (1904–1994). С 1989 г. и в США, и в СССР функционируют соответствующие научные программы; позднее возникла Международная организация по изучению генома человека (HUGO). Вклад России в международное сотрудничество признан в мире: 70 отечественных исследователей являются членами HUGO.
Итак, прошло 10 лет с того времени, когда проект «Геном человека» был завершен. Есть повод вспомнить, как это было.
В 1990 г. при поддержке министерства энергетики США, а также Великобритании, Франции, Японии, Китая и Германии, был запущен этот трехмиллиардный проект. Возглавил его д-р Фрэнсис Коллинз, глава International Human Genome Sequencing Consortium. Целями проекта являлись:
- идентификация 20 000–25 000 генов ДНК;
- определение последовательности 3 млрд. пар химических оснований, составляющих ДНК человека, и сохранение этой информации в базе данных;
- усовершенствование приборов для анализа данных;
- внедрение новейших технологий в область частного использования;
- исследование этических, правовых и социальных вопросов, возникающих при расшифровке генома.
В 1998 г. аналогичный проект был запущен д-ром Крейгом Вентером и его фирмой «Celera Genomics». Д-р Вентер поставил перед своей командой задачу более быстрого и дешевого секвенирования человеческого генома (в отличие от трехмиллиардного международного проекта, бюджет проекта д-ра Вентера ограничивался 300 млн долл. Кроме того, фирма «Celera Genomics» не собиралась открывать доступ к своим результатам.
6 июня 2000 г. президент США и премьер-министр Великобритании объявили о расшифровке человеческого генетического кода, и таким образом соревнование закончилось. На самом деле, был опубликован рабочий черновик человеческого генома, и лишь к 2003 г. он был расшифрован практически полностью, хотя и сегодня все еще проводят дополнительный анализ некоторых участков генома.
Тогда умы ученых были взбудоражены необыкновенными возможностями: новые, действующие на генетическом уровне лекарства, а значит, не за горами создание «персональной медицины», настроенной точно под генетический характер каждого отдельно взятого человека. Существовали, конечно, и опасения, что может быть создано генетически зависимое общество, в котором людей буду делить на высшие и низшие классы по их ДНК и соответственно ограничивать их возможности. Но все же была надежда, что этот проект окажется столь же прибыльным, сколь и Интернет.
И вдруг все затихло. надежды не оправдались. казалось, что 3 млрд долл. , вложенных в эту затею, выброшены на ветер.
Нет, не совсем так. Быть может, полученные результаты не столь грандиозны, как предполагалось во времена зарождения проекта, но они позволят достичь в будущем значительных успехов в различных областях биологии и медицины.
В результате исполнения проекта «Геном человека» был создан открытый банк генокода. Общедоступность полученной информации позволила многим исследователям ускорить свою работу. Коллинз привел в качестве иллюстрации такой пример: «Поиск гена фиброзно-кистозной дегенерации был успешно завершен в 1989 г. , что стало результатом нескольких лет исследований моей лаборатории и еще нескольких других и стоило США около 50 млн долл. Сейчас это способен сделать смышленый выпускник университета за несколько дней, и все, что ему понадобится, — это Интернет, несколько недорогих реактивов, термоциклический аппарат для увеличения специфичности сегментов ДНК и доступ к ДНК-секвенатору, читающему ее по световым сигналам».
Еще один важный результат проекта — дополнение истории человека. Раньше все данные об эволюции были почерпнуты из археологических находок, а расшифровка генокода не только дала возможность подтвердить теории археологов, но в будущем позволит точнее узнать историю эволюции как человека, так и биоты в целом. Как предполагается, анализ сходства в последовательностях ДНК различных организмов сможет открыть новые пути в исследовании теории эволюции, и во многих случаях вопросы эволюции теперь можно будет ставить в терминах молекулярной биологии. Такие важнейшие вехи в истории эволюции, как появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных, можно будет проследить на молекулярном уровне. Ожидается, что это позволит пролить свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами: приматами, неандертальцем (чей генокод недавно был реконструирован из 1,3 млрд фрагментов, подвергавшихся тысячелетнему разложению и загрязненных генетическими следами археологов, державших в руках останки этого существа), а также и всеми млекопитающими, и ответить на вопросы: какой же ген делает нас Homo sapiens, какие гены отвечают за наши поразительные таланты? Таким образом, поняв, как прочитать информацию о нас в генокоде, мы сможем узнать, как гены влияют на физические и умственные характеристики и даже на наше поведение. Возможно, в будущем, посмотрев на генетический код, можно будет не только предсказать, как будет выглядеть человек, но и, к примеру, будет ли у него актерский талант. Хотя, естественно, никогда нельзя будет это определить со 100%-ной точностью.
Кроме того, межвидовое сравнение покажет, чем отличается один вид от другого, как они разошлись на эволюционном древе. Межпопуляционное сравнение покажет, как этот вид эволюционирует. Сравнение ДНК отдельных особей внутри популяции покажет, чем объясняется различие особей одного вида, одной популяции. Наконец, сравнение ДНК различных клеток внутри одного организма поможет понять, как происходит дифференцирование тканей, как они развиваются и что идет не так в случае заболеваний, таких например, как рак.
Вскоре после расшифровки большей части генокода в 2003 г. , ученые обнаружили, что существует гораздо меньше генов, чем они ожидали, но впоследствии убедились в противоположном. Традиционно ген определяли как участок ДНК, который кодирует белок. Однако, расшифровывая генокод, ученые выяснили, что 98,5% участков ДНК не кодируют белки, и назвали эту часть ДНК «бесполезной». И выяснилось, что эти 98,5% участков ДНК имеют едва ли не большее значение: именно эта часть ДНК отвечает за ее функционирование. Например, определенные участки ДНК содержат инструкции для получения похожих на ДНК, но небелковых молекул, так называемых двухцепочечных РНК. Эти молекулы являются частью молекулярно-генетического механизма, контролирующего активность гена (РНК-интерференция). Некоторые двухцепочечные РНК могут подавлять гены, препятствуя синтезу их белковых продуктов. Таким образом, если данные участки ДНК также считать генами, то их количество удвоится. В итоге исследования изменилось само представление о генах, и сейчас ученые считают, что ген — это единица наследственности, которую нельзя понимать как просто участок ДНК, кодирующий белки.
Можно сказать, что химический состав клетки — ее «хард», а информация, закодированная в ДНК, — предварительно загруженный «софт». Никто раньше и не предполагал, что клетка является чем-то большим, чем просто совокупностью составных частей, и что для ее построения недостаточно закодированной в ДНК информации, что столь же важным является процесс саморегулирования генома — и путем сообщения между соседними генами, и путем воздействия других молекул клетки.
Открытый доступ к информации позволит объединить опыт врачей, информацию о патологических случаях, результаты многолетнего изучения отдельных особей, и потому станет возможным соотнести генетическую информацию с данными анатомии, физиологии, поведения человека. И уже это сможет привести к лучшей медицинской диагностике и прогрессу в лечении.
Например, исследователь, изучающий определенную форму рака, сможет сузить круг поиска до одного гена. Сверив свои данные с данными открытой базы генома человека, он сможет проверить, что другие написали об этом гене, включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими генами человека или с генами мышей, дрожжей или дрозофилы, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела, в которых ген активируется, заболеваниями, связанными с этим геном, или другие данные.
Более того, понимание хода заболевания на уровне молекулярной биологии позволит создать новые терапевтические методы. Учитывая, что ДНК играет огромную роль в молекулярной биологии, а также ее центральное значение в функционировании и принципах работы живых клеток, углубление знаний в этой области откроет путь для новых методов лечения и открытий в различных областях медицины.
Наконец, и «персональная медицина» теперь кажется уже более реальной задачей. Д-р Уиллс выразил надежду, что лечение заболеваний путем замены поврежденного участка ДНК нормальным станет возможным уже в следующее десятилетие. Сейчас проблемой, препятствующей развитию такого метода лечения, является то, что ученые не умеют доставлять ген в клетку. Пока единственный известный способ доставки — заражение животного вирусом с необходимыми генами, но это опасный вариант. Однако д-р Уиллс предполагает, что в скором времени в этом направлении будет совершен прорыв.
Сегодня уже существуют простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак молочной железы, нарушение свертываемости крови, кистозный фиброз, заболевания печени и др. Такие заболевания, как рак, болезнь Альцгеймера, диабет, как было выяснено, связаны не с общими для всех, а с огромным количеством редких, практически индивидуальных мутаций (причем не в одном гене, а в нескольких; например, мышечную дистрофию Шарко-Мари-Тут может вызвать мутация 39 генов), в результате чего эти болезни трудно поддаются диагностике и воздействию медицинских препаратов. Именно это открытие является одним из камней преткновения «персональной медицины», поскольку, прочитав генокод человека, пока невозможно точно определить состояние его здоровья. Исследуя генокоды разных людей, ученые были разочарованы результатом. Около 2000 участков ДНК человека статистически относилось к «болезненным», которые при этом не всегда относились к работающим генам, т. не представляли угрозы. Похоже, что эволюция избавляется от мутаций, вызывающих болезнь, до того, как они станут общими.
Проводя исследования, группа ученых в Сиэтле обнаружила, что из всего человеческого генокода лишь 60 генов претерпевают спонтанную мутацию каждое поколение. При этом мутировавшие гены могут вызвать различные заболевания. Так, если у каждого из родителей было по одному «испорченному» и одному «неиспорченному» гену, то у детей болезнь может и не проявиться или проявится в очень слабой форме, если они получат один «испорченный» и один «неиспорченный» ген, но если ребенок унаследует оба «испорченных» гена, то это может привести к болезни. К тому же, поняв, что общечеловеческие болезни вызываются индивидуальным мутациями, ученые пришли к выводу, что необходимо исследовать полностью весь генокод человека, а не его отдельные участки.
Несмотря на все затруднения, уже созданы первые генетические лекарства против рака, которые блокируют эффекты генетических отклонений, приводящих к росту опухолей. Также недавно было одобрено лекарство компании «Amgen» от остеопороза, которое основывается на том, что болезнь вызывается гиперактивностью определенного гена. Последнее достижение — проведение анализа биологических жидкостей на присутствие мутации определенного гена для диагностики рака толстой кишки. Такой тест позволит избавить людей от неприятной процедуры колоноскопии.
Итак, привычная биология ушла в прошлое, наступил час новой эры науки: постгеномной биологии. Она полностью развенчала идею витализма, и хотя в него уже больше столетия не верил ни один биолог, новая биология не оставила места и для призраков.
Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Похожую революцию в геномике производят сейчас мощные компьютеры и информация, содержащаяся в ДНК.
Закон Мура говорит о том, что компьютеры увеличивают свою мощность вдвое примерно каждые два года. Таким образом, за последнее десятилетие их мощность возросла более чем в 30 раз при постоянно снижающейся цене. В геномике пока нет имени для аналогичного закона, но его следовало бы назвать законом Эрика Лэндера — по имени главы Broad Institute (Cambridge, Massachusetts, крупнейший американский центр, занимающийся расшифровкой ДНК). Он подсчитал, что по сравнению с прошлым десятилетием цена расшифровки ДНК снизилась на сотни тысяч долларов. При расшифровке последовательности геномов в International Human Genome Sequencing Consortium использовали метод, разработанный еще в 1975 г. Сенджером, что заняло 13 лет и стоило 3 млрд долл. А значит, расшифровка генетического кода была под силу только мощным компаниям или центрам по исследованию генетической последовательности. Сейчас, используя последние устройства для расшифровки от фирмы «Illumina» (San Diego, California), человеческий геном может быть прочитан за 8 дней, и стоить это будет около 10 тыс. долл. Но и это не предел. Другая калифорнийская фирма, «Pacific Biosciences» из Менло Парка, разработала способы, позволяющие прочитать геном всего с одной молекулы ДНК. Вполне возможно, что скоро расшифровка генома будет занимать минут 15 и стоить менее 1000 долл. Аналогичные разработки существуют и в «Oxford Nanopore Technologies» (Великобритания). Раньше фирмы использовали решетки проб ДНК (ДНК-чипы) и искали определенные генетические символы — SNP. * Сейчас известно несколько десятков таких символов, но есть основания предполагать, что среди трех миллиардов «букв» генетического кода их гораздо больше.
До недавнего времени полностью было расшифровано всего несколько генокодов (в проекте «Геном человека» были использованы кусочки генокода множества людей, а затем собраны в единое целое). Среди них генокоды К. Вентера, Дж. Уотсона, д-ра Ст. Куэйка, двух корейцев, китайца, африканца, а также больного лейкемией, национальность которого ныне уже трудно установить. Теперь, с постепенным усовершенствованием техники чтения последовательностей генов, станет возможным расшифровка генокода все большего и большего числа людей. В будущем свой генокод сможет прочитать любой человек.
Кроме стоимости расшифровки, важным показателем является его точность. Считается, что приемлемым уровнем является не более одной ошибки в 10 000–100 000 символов. Сейчас уровень точности находится на уровне 1 ошибки в 20 000 символов.
На настоящий момент в США ведутся споры по поводу патентования «расшифрованных» генов. Однако многие исследователи считают, что патентование генов станет препятствием для развития науки. Главная стратегическая задача будущего сформулирована следующим образом: изучить однонуклеотидные вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить различия между индивидуумами. Анализ таких вариаций даст возможность не только подойти к созданию индивидуальных генных «портретов» людей, что, в частности, позволит лучше лечить болезни, но и определить различия между популяциями, выявлять географические районы повышенного «генетического» риска, что поможет давать четкие рекомендации о необходимости очистки территорий от загрязнения и выявлять производства, на которых есть большая опасность поражения геномов персонала.
* SNP — одиночный генетический символ, который меняется от человека к человеку. Его открыли специалисты «International HapMap Project», изучая такую мутацию генокода, как однонуклеотидный полиморфизм. Целью проекта по картированию участков ДНК, различных для разных этнических групп, был поиск уязвимости этих групп к отдельным заболеваниям и возможностей их преодоления. Эти исследования могут также подсказать, как человеческие популяции адаптировались к различным заболеваниям.